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OQIectzves | =
* Quantify fuel effects on fuel processor performance
« Quantify fuel and fuel impurity effects on catalyst durability.
» Understand parameters that affect fuel processor lifetime and durability.

Approach

« Examine Fuel Effects on Fu Processmg
* Examine 1nd1v1dual fuel components / component blends / gasoline
e Carbon formatlon Lt -
e Gas phase vs. catalytlc ox1d, e

« Modeling of fuels

» Carbon formatlon modelmg
» Equilibrium modehng

. Thermodynamlc propemdehng S




Testing Facilities

LANL Catalytic
Partial Oxidation/Steam Reforming

Test supported non-proprietary
catalysts

Shown with observation windows

Homogeneous partial oxidation

Fuel components testing with
homogeneous partial oxidation /
catalytic steam reforming

(provided by Nuvera)

Why Homogeneous:

Target of <30 sec start-up time




H | Carbon (Soot) Formatlon

2C0 < C+CO;, (Boudart Reactlon)' o
CH; & C+2H, (CH;4 Decomposmon)

CH; > CHs+H; > C2H4 +H; > Csz + Hz — aromatics + H, — soot
C.Hz, — C, + nH;

* Formation of heavier hydrocarbons snch as polycychc aromatic
compounds from aromatlcs o

1 - Structural change of catalyst pal'tICIE(S ftermg, ‘)y |

« Fuel impurities change catalyst yact,’wl;_’fffi(polﬁsoyn)
- Methods to help delineate cata’lyét"degi‘adation:

* Monitor catalyst act1v1ty and performance

* Measure carbon formatlon G




” Fuel Effects onO rUtlllZElthIl
_in Catal /tic POx Reactor

Oxidation dlfferences w1th Iso Octane and Iso Octane/20% Xylene
Pt washcoated monolith; (O/IC=1,S/C=1)

100

c
o
L

@
N
E
=
o
o

- |so-Octane
-#-|so-Octane / 20% Xylene

10 12 14 16

~ Residence Time (msec)




Ox1dat10n dlfferences w1th~I ;-.ctane and Iso Octane/20% Xylene
Pt washcoated monohth (O/C 0.8,S/C=1)
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Oxxdatlon differences w1tn various fuels
Commercial Washcoated monolith; (O/C=1.0,S/C=1)
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F uel Effec.ts on O Utlhzatlon
lnCatal '*-"'tlc P.X Reactor

| OX1dat101n d;ffe;ences W1tn various fuels
Commercial washcoated monolith; (O/C =0.7, S/C =1)
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Homogeneous ox1df tion was easier with ‘real” fuels
Difficult to keep cembustlon W1th pure c _fmponents iso- octane and iso-octane/xylene




Temperature °C

- Combusﬁon Zohe
—&— Steam Reforming Zone
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O/C
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ilips
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15 msec

S/C = 1.0, Residence time




Carbon Formation




Carbon Formation
Partial Oxidation of Philips Naptha Stream

e e

Decreasing O/C Increasing O/C

0O/C=0.85

Carbon Formation

o Observed
Once on-set of carbon formation is initiated,

increase in oxygen increases outlet

monolith temperature;
yet carbon formation remains

S/C=1.0, Residence time = 15 msec




Measurement of
Incipient Carbon Formation

Simplified schematic of a laser
scattering-extinction system (not
all components shown)

Scattering

Laser scattering-extinction

) o0 Eerpscen system provides a real-time
measurement of carbon particles

or soot formation

ference

Spectral Detection allows for
fluorescence detection of PAHs —
considered precursors to soot

Extinction

Flange with purged windows to
POx Outlet allow optical access to outlet of
POx

Cross-Section Probe sampling coupled to online
E? 2 Phc;tO?gﬁctor mass spec allows detection of
= SPeCURL I higher AMU compounds ( <200




I ¥ Extinction

Detector

Reactor Catalyst
Fluorescence . .
Window Window
5 ,’?‘*f; ¥ - Laser extinction
R “,\&g&j&.&t (fq) .
) measurements monitor on-
) set of carbon

* Laser scattering quantifies § &
carbon formation

e Fluorescence indicates
PAHCs

Ar lon Laser

Laser Chopper

Beam Splitter
Reference Beam




|« Measurement of carbon On-!j t
|« Currently working on abserban fer direct m

‘ quant1ty
| * Incorporating fluorescence measurements of carbon precursors

roxtempeaire | -« Real time measurement
A P 4 ~» Visual ~ 10% absorbance
. Lfa'ser < 2% absorbance
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Modeling of Carbon Formation Dlsappearance
for Different Fuel Compositions

e O/C 06(Cetane 50, P - 30)

;};-—b—-O/C 08(Cetane 50 P =30)

»
(@]
o
(@]

'—.m_—o/c = 1.0 (Cotans. = 50‘, p - 30)
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Partial OXidation of Iso-octane
(750°C, O/C = 0.76, H,0/C
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test with CH,,
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e) p-xylene

~d) m-cyclohexane

- c) pentene

a) initial‘carbc{)ﬁ i
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b iso-octane
Bmdmg Energy
Elemental Analysis / Chemlcal Shift

— large amounts of carbon formatlon |
»  p-xylene >> methylcyclohexane > l—pentene >> iso-octane
—  NiC (nickel carblde) was formed w1th p xylene
— Carbon shlftlng to lower bmdmg energles with increasing quantity

. dlfferent carbon spec1es‘7




Low noble metal loaded fuel processor
— demonstrated low noble metal loaded ATR

» low loaded Pt/ Al,O, washcoat / 400 cpsi monolith
« 1 g total Pt catalyst loading

— non-noble metal steam reforming unit
« Ni/Al,O, or promoted Ni/Al,O,

Operation to > 60 kW LHV fuel ln (with iso-octane)

— about 30 kW LHV W|th aromatuc compounds for similar O,
conversion in POx section -

— Operation with simulated gasoline fuel components (no sulfur)

Scales to ~ 2 g Pt for > 50 kW electrlc equivalent ($20 / g Pt)

- noble metal loadlng dependent upon fuel




B Sample #

CO Chemisorption

 Dispersion

e Crysta"'te
| Diameter

Metal Surface |

Area

“(Description) |

(ccSTPIg at 55 Torr) |

| (om)

(m2/g catalyst)

81. (Fresh .5% Rh/ALO,)

0.718

143.6

B2: (Fresh 5% RhALO,
Qwith CHY)

0.254

50.8

| §3- (Fresh .5% Rhi/AL O,

‘B Rwith iso-octane)

| vieree

Negligible

Negligibie

B 1. (Fresh 5% NiALOy)

n 5 -

1.4

28

B B5. (5% Ni/ALO; with iso-
i Joctane)

1.18

143

0.235




)

11
llets

1se wi
ith
1 Pe

0.6 lmprove wi

scattering
measurements

Signal/no

Laser Signal

« < 0

2 e
|

)

250

\
\

10N 11

ith)

Measurement of carbon on-set

Reduct
Formation
Time / sec
(monol

10N

0]
QO
=
o,
@
=
5
N
S
-
-
S
.m
S
RS
-
)
e
S
@)

dat

i

oble metal ox

O/C -
reduced POx/SR temperature ;"A"
Ni SR catalyst (pellets) S
Laser signal due to carbon ‘suppressed’ due to metal mesh (holding N

N




1 MEA Assumpilons

R CawystSufacearea

Anode Loading

MEA PtSurface area

Al

0 012!

- IMEA Pt Surface area

~ 20em2 Pt

‘@ EC Charge for Ptsurface i

’.v.‘x,210f TicroCo

- Pt Surface sites

B |MEA Pt Surface sites

T 1.31E+15Pt sur

157E+17f, Pt si

Pt utilization

501%

- jAvailable surface sites

T 87§+16

: System durability

- 5000 hrs
Impurity specifications

< ppm NH,

# Pt sites / cm2 membrane |

| - <0.1ppmH,S

1 Stack Assumptions:

B 'Anode Stoich

‘B Current Density

: ~~..o,5'1

: ~iHydrogen flowrate

1 56055E+18;

| & Hydrogen Concentration

oo 003434017.

' Total Molecular Flow -

~ 3:90E+18|molectie

'Contaminant Flowrate

~ 3.90E+10|molecules/s

~ :Contaminant sticking coeffi CIent

04

f
i

B Time for saturation

2.02E+07

' Tlme for satu ration

§ Contaminant Conc. |

 Estimate by calculation

e membrane sites

* catalyst sites

e Potential ‘irreversible’

| .COntaminants need to
be <0.01 ppm

(<10 ppb)
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Steam reformmg condltlon T
S/C=1.0,0/C=07,T= 7000C

Equilibrium calculatlons .
HCN - 0.4 ppm HCN NH None detected to low levels

NH, — 89 ppm | ‘\ | What happens to bound Nitrogen
C2H2-0.03ppb i (Naptha < 0.15 %N)
C2H4 - 12 ppb | Lo

|
Experlmentallv Measured

HCN-ND
NH, - ND
| C2H2 - (up to) 600 ppm
~ C2H4 - 250 ppm




« Homogeneous oxidation
« easier with ‘real’ fuels than pure components \

« Catalytic oxidation
 aromatics slow and mh1b1t overall reactlon rate

» Carbon Formation o
» Hysteresis observed after on-set of carbon formation
» Greater carbon formation with agématics

* Diesel Fuel Components*(f 1¢)
« Lower conversmn / higw T T ; tlme requlred for O2 conversion

+ Laser & visual monitoring of carbon formation




Catalyst Effects and Characterization

« Pt/Al,O,, Rh/ALO; and unpromoted / promoted Ni/ALLOj; catalysts

« Unwashcoated noble metal catalyst show low activity

« Decreased surface area after testing

 Less carbon formation with promoted Nickel steam reforming catalyst

Plans and Future work
» Lifetime tests with c'andldat‘é fuels [ catalysts
* monitor catalytic actmty with operational time with fuel

constituents
« evaluate the reformmg kmetlcs as f(catalyst fuel)

* Fuel effect comparlson between catalytle and homogeneous partial
oxidation ‘
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